

Tools for energy planning

August 2010

Overview

- Introduction important challenges for the energy industry
- Energy scenarios as supporting tool for dealing with future uncertainties and identification of future opportunities
 - ✓ General philosophy
 - ✓ Methodologies
 - ✓ Limitations
 - ✓ Follow up questions and impact analysis
 - ✓ Selected examples

Huge and complex challenges for the energy future – avoid trade off's, look for synergies

Huge and complex challenges for the energy future – avoid trade off's, look for synergies

Consider competing goals

Quino, Der große Quino, dtv 1466

- cross sectoral, integrated perspective requested instead of looking for a partial optimum
- Don't focus on the wolf if there might be other dangerous animals around

Historical development of oil prices (real values)

Increasing fossil fuel costs due to significant incentives to extend renewable energies

Future uncertainties

Illustrative example – expected learning effects power plant technologies

What are the options for climate protection and adaptation?

There is no silver bullet – a combination of technologies has to solve the problems

CONTINUATION OF THE FOSSIL-EXPANSIVE PATH

Energy system perspectives

How the energy system is developing?

Energy system perspectives

How the energy system is developing?

Use energy scenarios to define and discuss orientation marks and to help politicians to shape the energy future

Overview

- Introduction important challenges for the energy industry
- Energy scenarios as supporting tool for dealing with future uncertainties and identification of future opportunities
 - ✓ General philosophy
 - ✓ Methodologies
 - ✓ Limitations
 - ✓ Follow up questions and impact analysis
 - ✓ Selected examples

Philosophy of Wuppertal Institutes Scenario Work

- Scenarios are quite different from predictions
- Scenarios are asking "what happens if"
- Scenarios are based on a consistent set of assumptions which should be outlined transparently
- Scenarios are necessary
 - to pick up future uncertainties
 - to identify the corresponding range of possible future paths (including the branching points)
 - to describe the major impacts and dangers of those paths
 - to deal with new challenges and significant changes of crucial frame conditions
 - to gain more experience about the manifold interactions in the system
 - to enable an elaborate discussion about suitable policy and technology strategies following defined targets
 - → For policy makers it is worthwhile to present set of different scenarios to mark the decision range
 - → Scenarios should include a broad spectrum of opinions and expert views from different stakeholders (e.g. via interviews)

Policy context

- ✓ Identification of suitable key aspects and strategies for an integrated energy and climate policy
- Starting point for a public and political debate on different energy future paths
- ✓ Identification of robust strategies (orientation knowledge)

Industry and Enterprises

- Identification of future business opportunities (future markets) and market potential assessment
- Improved planning and investment reliability through considering and assessing future uncertainties

Identification of technology needs and gaps

- ✓ Identification of entrepreneurial opportunities
- ✓ Determination of R&D priorities

For what for instance scenarios can be applied?

Selected projects of the Wuppertal Institute

- 1990: Parliamentary Enquete Commission "Protection of the Earth"
 - Setting of a long term target: -80% GHG by 2050
 - Prof. Hennicke was member of that commission.
- 1995: WI flagship study: Sustainable Germany
 - Groundbreaking study for German sustainability discussion
 - Mainly qualitative recommendations on "basic needs"
 - Quantitative scenario analysis for 2050 (cross sectoral and problem perspective)
- 2006-2009: Long low carbon scenarios for the EU (WWF, EU Commission)
- 2000: Long term energy scenarios for Germany (Fed. Environmental Agency)
- 2002: Parliamentary Enquete Commission "Sustainable Energy Future"
 - Prof. Hennicke & Dr. Lehmann were members of that commission
 - Quantitative energy scenarios for Germany: -80% GHG by 2050; competing analysis WI vs. IER (lead by Manfred Fischedick)

For what for instance scenarios can be applied?

Ш

Selected projects of the Wuppertal Institute

- 2004 2006: Ecologically optimised expansion of renwable energies
 - Quantitative energy scenarios for Germany: -80% GHG by 2050, with DLR
 - Basic studies for the annual "Leitstudie 2050" of German MOE
- 2008: Pathways to a carbon free Munich 2058
 - Commissioned by Siemens as part of their sustainable urban infrastructures project
- 2009 and ongoing: Low Carbon Region/City Concepts
 - Pre study for "low carbon Alpes region"
 - Pre study "Sustainable Ruhr Valley"
 - Low Carbon infrastructures for cities (e.g. Düsseldorf)
- 2010 (intended): Low Carbon Cities in Germany and China
 - Concepts studies and organisation of experience exchange (sister city concept)

Range of possible future paths – German Long Term Energy Scenario Different pathways for 80 % GHG reduction compared to 1990 by 2050 – make results explicit

Overview

- Introduction important challenges for the energy industry
- Energy scenarios as supporting tool for dealing with future uncertainties and identification of future opportunities
 - ✓ General philosophy
 - Methodologies
 - ✓ Limitations
 - ✓ Follow up questions and impact analysis
 - ✓ Selected examples

Methodological approach of bottom up scenario modelling

Energy system modelling

- Bottom-up oriented technological energy modelling (from energy service demand to primary energy exploitation technology)
- Detailed technological analysis of the energy systems
 - Supply side
 - Demand side (high disaggregation level considered)
- Simulation approach (determination of market shares via expert knowledge)
- RES as technological, simplified picture of the real energy system (RES: Reference Energy System)

Bottom up Energy System Modelling

Reference Energy System (RES)

Bottom up Energy system Modelling Characteristics of simulation approach

Criteria for determination of market shares

- General scenario philosophy
- Distinguished driving forces (technology status, market, society, government etc.)
- Costs
 - from national perspective
 - from individual perspective
- Market barriers
- Available policy measures for overcoming barriers
- Expected opposition against implementation of suitable policies
- Continuity principles for development processes (e.g. market introduction and penetration path of new technologies) - avoiding structural breaks

The result is not the optimum from the mathematical point of view but may be a more realistic solution

Overview

- Introduction important challenges for the energy industry
- Energy scenarios as supporting tool for dealing with future uncertainties and identification of future opportunities
 - ✓ General philosophy
 - ✓ Methodologies
 - ✓ Limitations
 - ✓ Follow up questions and impact analysis
 - ✓ Selected examples

Limitations of scenario analysis

How to deal with future uncertainties – scenarios do not predict the future but can help to assess the scope of possible futures

Predictions (prognosis) are difficult, in particular if they deal with future aspects

(Winston Churchill)

Limitations of scenario analysis

Scenarios can not foreseen massive and sudden structural changes (e.g. oil price crises)

- Forecasts by MoE
- Significantly and constantly overestimated future demand
- Examples of projections on purpose (e.g. Germany) – structural effect of possible oil price crises have not been considered

Limitations of scenario analysis

Scenarios can not foreseen massive and sudden structural changes (e.g. oil price crises)

Scenarios and reality

As a result of policy measures and unexpected technology developments reality can be faster than scenarios expect

Overview

- Introduction important challenges for the energy industry
- Energy scenarios as supporting tool for dealing with future uncertainties and identification of future opportunities
 - ✓ General philosophy
 - ✓ Methodologies
 - ✓ Limitations
 - ✓ Follow up questions and impact analysis
 - ✓ Selected examples

Follow up questions and impact analysis

Energy scenarios can not reply to all questions

- How climate protection future fit with other goals related to the energy sector: Sustainable Development is more as "Low Carbon"?
 - identification of trade offs
 - cross problem/sectoral analysis (sustainability scenarios)
- What are the impacts of the climate protection future from a broader integrative perspective?
- How "low carbon structures" can be shaped and implemented?
 - What are the concrete tasks within the transition process?
 - Which kind of social and cultural impacts can be expected and have to be considered?
 - Which role consumer behaviour does play?
 - How necessary modifications can be communicated?
 - How suitable policies and instruments can be shaped supporting the transition process?

Overview

- Introduction important challenges for the energy industry
- Energy scenarios as supporting tool for dealing with future uncertainties and identification of future opportunities
 - ✓ General philosophy
 - ✓ Methodologies
 - ✓ Limitations
 - ✓ Follow up questions and impact analysis
 - ✓ Selected examples

Global Energy and Climate Scenarios

CO₂-Mitigation scenario (450 ppm CO_{2eq} scenario to achieve 2° target)

Global climate protection strategy

CO₂-reduction requirements related to world regions

	Abatement	
	2020	2030
Total (MtCO2)	3 850	13 840
OECD+	43%	36%
Other Major Economies	40%	43%
Other Countries	16%	19%

Of which the US comprises about half Of which China comprises about three quarters

Global climate protection strategy

Additional investments compared to BAU in different world regions

The 450 Scenario sees \$10 trillion of additional investment to the Reference Scenario, costing 0.5% of GDP in 2020 and 1.1% of GDP in 2030

Descriptive results of scenario analysis

Electricity generation mix

ENERGY TECHNOLOGY **PERSPECTIVES** 2008 Scenarios & Strategies to 2050 INTERNATIONAL **ENERGY** HE **AGENCY**

In support of the G8 Plan of Action

© OECD/IEA - 2008

Descriptive results of scenario analysis

Average Annual Capacity Additions (2010 – 2050)

ENERGY TECHNOLOGY PERSPECTIVES 2008 Scenarios & Strategies to 2050 INTERNATIONAL Θ **ENERGY AGENCY**

© OECD/IEA - 2008

In support of the G8 Plan of Action

Long term energy scenarios in Germany

Lead Scenario for the German Ministry for Environment: Climate protection based on renewable energies and energy efficiency improvement

Primary energy demand in PJ

Source: DLR 2008

Long term mitigation scenario perspective for Germany

Power generation

Cities have to deal with many challenges on the way to a sustainable deveploment

Climate Change

 Cities are responsible for ca. 80% of the anthropogenic greenhouse gas emissions

Urbanization

 Since 2007 more than 50% of the world population lives in cities, by 2050 approx. 70% are expected

Demographical change

 90% of population growth until 2030 derives from cities

Growing mobilty demand

By 2010 in Western Europe traffic jams in cities will increase by 188%

Growing limitation of natural resources

 75% of global energy demand comes from cities

Growing impacts on the infrastructure

The 3 day power shortage in New York City in 2003 due to overheating the system caused an economic damage from approx. 1 Mrd. US Dollar

Scenario application on the city level - sustainable Urban infrastructure on behalf of Siemens

Munich 2058 – Pathways to a Carbon Free Future

Blueprint for the restructuring of cities

- 50% of the worlds population lives in cities, but they consume more than 70% of the energy
- cities are determining nodes of ressource use and core to the solution
- 50% of cities of 2050 are still to be built
- 50% have been already built (including infrastructural backbones)

Project goals:

- Technology matrix
 (100 local technologies for a CO₂ free future)
- Scenario analysis "Vision Munich 2058"
 Scenarios (Target & Bridge): 750 / 1300 kg CO₂/cap
- Pilot district "CO₂ free" by 2038
- Future oriented technology portfolio for manufacturer
- Economic chances of being a low carbon frontrunner

Example Munich:

Two pathways to a carbon free city

- ➤ We analysed the period up to 2058 (the cities 900 anniversary)
- ➤ As ambitious climate protection goal orientation on the EU decisions took place: The EU Environment Ministers target: 2t CO₂ equivalents per capita!
- ➤ We described two different ways cutting down CO_{2,eq} emissions to 2 tons per capita annually

Scenario application on the city level - sustainable Urban infrastructure on behalf of Siemens

Munich 2058: Key strategies for 90% CO2 reduction

Outlook and summary: Scenario analysis – how to approach (a practical guide in 9 steps)

- Analysis of the problem (achievement of climate protection target)
- Analysis of the environment and the determining aspects/ variables
- Assumptions about Business as Usual (BAU) development
- Consistency check and definition of alternative future paths
- Scenario writing (definition of storyline and selected ← strategies)
- Identification and analysis of possible disruptions
- Impact analysis
- Re-Formulation of scenario if necessary
- Identification and implementation of measures based on scenario analysis

contact:

Prof. Dr. Manfred Fischedick

Vizepräsident **Wuppertal Institut** Döppersberg 19 42103 Wuppertal 0202-2492-121 0202-2492-198 (FAX) 0202-2492-109 (Sekretariat)

Manfred.Fischedick@wupperinst.org